Bio-based Materials and Sustainability
An essential attribute of biobased substances will be their sustainability. The first distinction with fossil primarily based substances is the use of renewable resources. The use of plant and/or microbial sources can keep away from this problem, as lengthy as the existence cycle of the biobased fabric can be closed. Fossil primarily based substances are dumped in land-fills or burnt to generate CO2 and water. This skill that finally the supply for most presently used polymers will be depleted. Moreover, dumping leads to catastrophic waste troubles and burning fossil carbon leads to CO2 emissions that reason (further) world local weather change. Circular economic system tendencies attempt to limit the waste trouble by means of introducing re-use and recycling strategies. Biobased substances however, have extra viable for similarly waste prevention strategies, like biodegradation to inputs for future processes. Biobased substances are then again now not intrinsically sustainable. The biomass feedstock, manufacturing process, interdependency with different product cost chains, recycling and waste situations play an essential function in the stage of sustainability. Therefore, it is necessary to examine the sustainability of the contemporary substances and the biobased picks to virtually make a contribution to a extra sustainable world by means of growing biobased substances
Related Conference of Bio-based Materials and Sustainability
11th International Conference and Expo on Ceramics and Composite Materials
23rd International Conference and Exhibition on Materials Science and Chemistry
Bio-based Materials and Sustainability Conference Speakers
Recommended Sessions
- 3D Printing of Biomaterials
- Advanced Biomaterials
- Bio-based Materials and Sustainability
- Bio-Nanomaterials
- Biodegradable Biomaterials
- Biofunctional Materials
- Bioinspired Materials
- Bioinspired Materials
- Biomaterials
- Biomaterials and Nanotechnology
- Biomaterials and Nanotechnology
- Biomaterials Applications
- Biomaterials Applications
- Biomaterials Companies and Market Analysis
- Biomaterials in Drug Delivery Systems
- Biophotonics and Biomedical Optics
- Dental Biomaterials
- Polymer Biomaterials
- Properties of Biomaterials
- Tissue Engineering and Regenerative Medicine
Related Journals
Are you interested in
- Additive Manufacturing and 3D Printing - Material science 2025 (UK)
- Additive Manufacturing of Ceramics and Composites - Ceramics 2025 (UK)
- Advanced Characterization Techniques - Ceramics 2025 (UK)
- Advanced Characterization Techniques for Materials - Material science 2025 (UK)
- Advances in Nanomaterials and Nanotechnology - Material science 2025 (UK)
- Bioceramics and Biomedical Applications - Ceramics 2025 (UK)
- Biomaterials and Tissue Engineering - Material science 2025 (UK)
- Carbon Nanostructures and Graphene - Materials Chemistry 2025 (France)
- Ceramic Armour and Defence Applications - Ceramics 2025 (UK)
- Ceramic Coatings and Thin Films - Ceramics 2025 (UK)
- Ceramic Matrix Composites (CMCs) - Ceramics 2025 (UK)
- Ceramic Processing Techniques - Ceramics 2025 (UK)
- Ceramic Recycling and Waste Reduction - Ceramics 2025 (UK)
- Ceramics in Materials Science - Materials Chemistry 2025 (France)
- Chemical Engineering - Materials Chemistry 2025 (France)
- Composite Material Design and Development - Ceramics 2025 (UK)
- Computational Materials Science and Modeling - Material science 2025 (UK)
- Electrical and Electronic Ceramics - Ceramics 2025 (UK)
- Emerging Functional Materials for Electronics and Photonics - Material science 2025 (UK)
- Energy and Environmental Applications - Ceramics 2025 (UK)
- Environmental Sensors Using Ceramics - Ceramics 2025 (UK)
- Fracture, Fatigue and Failure of Materials - Materials Chemistry 2025 (France)
- Functional Ceramics - Ceramics 2025 (UK)
- Glass Ceramics and Applications - Ceramics 2025 (UK)
- Green Synthesis and Processing of Materials - Material science 2025 (UK)
- High-Performance Structural Materials - Ceramics 2025 (UK)
- High-Temperature Superconductors - Ceramics 2025 (UK)
- Industrial applications of crystallization - Materials Chemistry 2025 (France)
- Lightweight Composites for Aerospace and Automotive - Ceramics 2025 (UK)
- Materials for Advanced Coatings and Surface Engineering - Material science 2025 (UK)
- Materials for Aerospace and Automotive Applications - Material science 2025 (UK)
- Materials for Biomedical Applications - Material science 2025 (UK)
- Materials for Energy and Environmental Sustainability - Material science 2025 (UK)
- Materials for Nanoelectronics and Quantum Technologies - Material science 2025 (UK)
- Materials for Optoelectronic Devices - Material science 2025 (UK)
- Materials for Renewable Energy Technologies - Material science 2025 (UK)
- Materials for Sensing and Actuation - Material science 2025 (UK)
- Materials for Structural Applications and Lightweight Design - Material science 2025 (UK)
- Materials for Sustainable Construction and Infrastructure Development - Material science 2025 (UK)
- Materials Science and Chemistry - Materials Chemistry 2025 (France)
- Mineralogy - Materials Chemistry 2025 (France)
- Nano pharmaceuticals - Materials Chemistry 2025 (France)
- Nanodentistry - Materials Chemistry 2025 (France)
- Nanostructured Ceramics - Ceramics 2025 (UK)
- Nanotechnology Applications - Materials Chemistry 2025 (France)
- Novel Materials for Energy Storage and Conversion - Material science 2025 (UK)
- Photonic and Optical Materials - Materials Chemistry 2025 (France)
- Polymer Science and Applications - Materials Chemistry 2025 (France)
- Recycling and Sustainability in Ceramics - Ceramics 2025 (UK)
- Science and Technology of Advanced Materials - Materials Chemistry 2025 (France)
- Smart Materials and Intelligent Systems - Material science 2025 (UK)
- Solid-State Chemistry and Physics - Materials Chemistry 2025 (France)
- Sustainable Materials for a Greener Future - Material science 2025 (UK)
- Tissue Engineering - Materials Chemistry 2025 (France)
- Wearable and Flexible Ceramics - Ceramics 2025 (UK)